

1

The SQALE Method
for Managing Technical Debt

Definition Document

Author: Jean-Louis Letouzey

Version: 1.1

March 31, 2016

2

3

Table of Contents

1. Introduction ... 4
1. Version ... 4
2. Ownership and User Licence ... 4
3. Scope and Objective .. 5
4. Limitations ... 5
5. Reference Documents .. 5

2. Fundamental Principles ... 6
3. The SQALE Quality Model .. 8

1. General Structure ... 8
2. The Characteristics Level ... 8
3. The Subcharacteristics Level ... 9
4. The Requirements Level .. 9
5. SQALE Quality Model Tailoring .. 10

5.1. Tailoring the Characteristics List ... 10
5.2. Tailoring the Subcharacteristics List ... 10
5.3. Tailoring the Requirements List .. 10
5.4. The Quality Model and the Technical Debt concept .. 10

4. The SQALE Analysis Model ... 11
1. Structure ... 11
2. Remediation Functions.. 11
3. Non-remediation Functions ... 11
4. Aggregation Rule ... 11
5. Tailoring the Analysis Model ... 12

5.1. Tailoring the Remediation Functions .. 12
5.2. Tailoring the Non-remediation Functions .. 13
5.3. Tailoring the Aggregation Rules ... 13
5.4. The Analysis Model and the Technical Debt concept .. 13

5. The SQALE Indices .. 14
1. Absolute Indices ... 14

1.1. Characteristic Indices ... 14
1.2. Quality Index: SQI ... 14
1.3. Consolidated Indices .. 14
1.4. Business Impact Index: SBII ... 15

2. Index Densities .. 15
2.1. Code Size Measurement .. 15
2.2. Index Density ... 15

6. The SQALE Indicators ... 17
1. The SQALE Rating .. 17
2. The Kiviat .. 17
3. The SQALE Pyramid ... 17
4. The SQALE Debt Map ... 18
5. Steering a project with the appropriate indicators .. 19

7. The SQALE Conformity Criteria .. 20
8. Appendices .. 21

1. The representation condition ... 21
2. Example of Breakdown as Subcharacteristic .. 21
3. Quality Model Examples .. 22
4. Remediation Function Examples ... 22
5. Non-Remediation Function Examples ... 24
6. Examples of additional Indicators to the SQALE Indicators ... 25

4

7. The SQALE Quality Model’s Two Points of View ... 27
8. Use Scenario of the SQALE Method: Example 1 ... 28
9. Use Scenario of the SQALE Method: Example 2 ... 28
10. Comments .. 29

The SQALE Method Definition Document

 Version: 1.1

3

List of Figures

3.1. The SQALE Quality Method’s General Structure .. 8
3.2. The SQALE Quality Method’s Characteristics .. 8
3.3. The Subcharacteristics Resulting from Lifecycle Activities ... 9
6.1. SQALE Rating Grid Example ... 17
6.3. SQALE Pyramid Example ... 18
6.4. SQALE Debt Map Example .. 18
8.1. Example of Levels 1 and 2 of a SQALE Quality Model .. 21
8.2. SQALE Quality Model Example for the C++ Language .. 22
8.3. SQALE Quality Model Example for the Java Language .. 22
8.4. Example of Remediation Factors associated with various type of non-conformity 23
8.5. Example of Remediation Function for the Comment Rate ... 23
8.6. Example of Remediation Function for Cutting an Artefact .. 24
8.7. Example of Non-Remediation Factors associated with various types of non-conformity 24
8.8. Comparative Histogram of SQALE Maintainability Index Densities .. 25
8.9. Historical Trend Graph of the Technical Debt according to an application’ various parts 27
8.10. Historical Trend Graph of the Technical Debt according to the severity of the violations 26
8.11. Application Portfolio Management with a Map representation ... 26
8.12. The SQALE Quality Model’s Two Points of View .. 27

The SQALE Method Definition Document

.Version: 1.1 4

1. Introduction

1. Version

This document describes Version 1.1 of the SQALE Method (Software Quality Assessment based on
Lifecycle Expectations). The latest version of it can be accessed on the website at http://www.sqale.org

2. Ownership and User Licence

This method is the intellectual property of inspearit (previously named DNV IT GS France).

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
license.

This license is available on-line at the address: http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode or
by post to Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

You are free

 to Share - to copy, distribute and transmit the work

Under the following conditions:

 Attribution - You must attribute the work in the manner specified by the author or licensor (but not in
any way that suggests that they endorse you or your use of the work).

 Noncommercial - You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

With the understanding that:

- Any of the above conditions can be waived if you get permission from the copyright holder.

- Where the work or any of its elements is in the public domain under applicable law, that status is in
no way affected by the license.

- In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and limitations;

• The author's moral rights;

• Rights other persons may have either in the work itself or in how the work is used, such as
publicity or privacy rights.

Notice - For any reuse or distribution, you must make clear to others the license terms of this work.

The SQALE Method Definition Document

.Version: 1.1 5

inspearit declines to consider any software implementation of the method as a derived work. Software editors
can freely implement the SQALE method in their tools, whether they are licensed commercially or as open
source.

inspearit declines to consider any usage of the method as a derived work.

3. Scope and Objective

As the method’s name specifies, the SQALE method relates to the evaluation of software quality. This SQALE
Method can be applied to all deliverables and all representations of the software, such as UML models. The
scope of the version described in this document is limited to the evaluation of so-called source files.

The objective of this version of the SQALE Method is to support the evaluation of a software application’s
source code in the most objective, accurate, reproducible and automated way possible. It is also to provide
guidance and support for improving the quality of the source code. This is performed by implementing and
leveraging the concept of Technical Debt.

This document presents the quality model, the analysis model, the indices and the indicators.

4. Limitations

This document focuses on the description of the method and its concepts. Other related documents cover or will
cover subjects such as the precise definition of certain measures used, the recommended code evaluation method
and the manner of using and interpreting the indices and the SQALE indicators [Ref. 9].

Similarly, it does not describe the reasons that have led to its development nor the explanations concerning the
justification of certain technical choices and the advantages that can be drawn from them. This information, at
least partially, has already been presented in the documents referenced below [Ref. 1 to 3].

It is not seeking to describe how the SQALE Method should be implemented in tool form. Users and tool editors
alike are free to choose or to construct a solution implementing the method described in this document.

5. Reference Documents

Ref. 1 J-L Letouzey, Th. Coq, The SQALE Models for Assessing the Quality of Software Source Code,
DNV IT GS France, Paris, white paper, September 2009

Ref. 2 J.-L. Letouzey, Th. Coq, The SQALE Models for Assessing the Quality of Real Time Source Code,
ERTSS 2010, Toulouse, May 2010

Ref. 3 J.-L. Letouzey, Th. Coq, The SQALE Analysis Model - An analysis model compliant with the
representation condition for assessing the Quality of Software Source Code, VALID 2010, Nice,
August 2010

Ref. 4 ISO, International Organization for Standardisation, ISO/IEC 25010: 2011 , Systems and software
engineering -- Systems and software Quality Requirements and Evaluation (SQuaRE) -- System and
software quality models

Ref. 5 D. Spinellis, Code Quality: The Open Source Perspective, ISBN: 0-321-16607-8, Addison-Wesley,
2006

Ref. 6 N.E. Fenton, S. L. Pfleeger, Software Metrics: A Rigorous & Practical Approach, Second Edition,
ISBN 053495425-, PWS Publishing Company, Boston, 1997

Ref. 7 Th. McCabe, A. H. Watson, Structured Testing: A Testing Methodology Using the Cyclomatic
Complexity Metric, National Institute of Standards and Technology, Special Publication 500-235,
1996

Ref. 8 M.H. Halstead, Elements of Software Science. New York, Elsevier North-Holland, 1977

Ref. 9 J. L. Letouzey, M. Ilkiewicz, Managing Technical Debt with the SQALE Method, IEEE Software,
November 2012

The SQALE Method Definition Document

Version: 1.1 6

2. Fundamental Principles

The SQALE Method is based on the following nine fundamental principles:

1. The quality of the source code is a non-functional requirement.

A software development or maintenance project has objectives that have to be achieved. These relate to
deadlines, costs, functionality and quality. In order to be achieved, these objectives have to be formalised.
The formalisation of the objectives is translated into requirements. Those that relate to the quality of the
source code belong to the so-called non-functional requirements.

2. The requirements in relation to the quality of the source code have to be formalised according to the same
quality criteria such as any other functional requirement.

Consequently, a quality requirement concerning a software source code must at least be:

- Atomic

- Unambiguous

- Non-redundant

- Justifiable

- Acceptable

- Implementable

- Not in contradiction with any other requirement

- Verifiable

3. Assessing the quality of a source code is in essence assessing the distance between its state and its expected
quality objective.

Being that the objective is to meet the source code quality requirements; the measure of the quality of a
source code can be reduced to the measure of the distance that separates it from the targeted conformity.

Although other conceptions and other definitions of quality exist, it is this definition that the SQALE Method
takes into account for an assessment of the source code.

Comment:

As other conceptions and definitions are more subjective, the adopted definition provides better support for
automated assessment of the code’s quality.

4. The SQALE Method assesses the distance to the conformity with the requirements by considering the
necessary remediation cost of bringing the source code to conformity.

5. The SQALE Method assesses the importance, the impact of a non-conformity by considering the resulting
costs of delivering the source code with this non-conformity.

6. The SQALE Method respects the representation condition.

 The SQALE Method has been designed by respecting this condition (see a definition of this condition in the
appendix). This impacts the choice of the requirements, their organisation in the Quality Model and the
aggregation rules.

7. The SQALE Method uses addition for aggregating the remediation costs, the non-remediation costs and for
calculating its indicators.

The SQALE Method Definition Document

Version: 1.1 7

8. The SQALE Method’s Quality Model is orthogonal.

The SQALE Method uses an orthogonal Quality Model. This means that a requirement relating to one of the
code’s internal attributes appears only once in the Quality Model. A requirement is linked to only one quality
subcharacteristic. A subcharacteristic is linked to only one quality characteristic.

9. The SQALE Method’s Quality Model takes the software’s lifecycle into account.

The SQALE Method’s Quality Model’s characteristics, subcharacteristics and requirements are organised in
such a way as to reflect the chronology of the needs such as they appear in a software’s lifecycle.

The SQALE Method Definition Document

Version: 1.1 8

3. The SQALE Quality Model

1. General Structure

The SQALE Quality Model is used for formulating and organising the non-functional requirements that relate to
the code’s quality. It is organised in three hierarchical levels which are represented in Figure 3.1. The first level
is composed of characteristics, the second of subcharacteristics. The third level is composed of requirements that
relate to the source code’s internal attributes. These requirements usually depend on the software’s context and
language.

Figure 3.1. The SQALE Quality Model’s General Structure

2. The Characteristics Level

The SQALE Quality Model has nine Level 1 characteristics, which are presented in Figure 3.2. They have been
deduced from the theoretical cycle of a source file [Ref. 1].

These characteristics are “abilities” resulting from the ISO 25010 standard [Ref 4]. They have been selected, on
the one hand because they depend on the code’s internal properties, and on the other because they directly
impact the typical activities of a software application’s lifecycle.

The SQALE Quality Model can therefore be regarded as a projection of the ISO 25010 model in the chronology
of a software application’s lifecycle.

Figure 3.2. The SQALE Quality Model’s Characteristics

The SQALE Method Definition Document

Version: 1.1 9

3. The Subcharacteristics Level

Each characteristic may be broken down into subcharacteristics. Subcharacteristics are used to combine the
requirements into medium-sized groups so that “drill down” analyses can be carried out.

There are two types of subcharacteristic:

- Subcharacteristics corresponding to lifecycle activities such as unit test, integration test, optimisation of
processor usage and optimisation of the size of the generated code. These are represented in Figure 3.3. They
are presented in their chronological order.

- Subcharacteristics resulting from generally recognised taxonomies in terms of good and bad practices relating
to the software’s architecture and coding. This classification is an implementation choice. Inspiration can be
drawn from existing classifications such as the one carried out by D. Spinellis [Ref 5].

Figure 3.3. The Subcharacteristics Resulting from Lifecycle Activities

A subcharacteristic is attached to only one characteristic, the first in the chronology of the characteristics.

The appendix contains an example of characteristic and subcharacteristic hierarchy.

4. The Requirements Level

This level of the model contains all of the source code’s quality-related requirements. They are formulated by
respecting the quality criteria (atomicity, clarity, and so on) presented in the Fundamental Principles section.

Requirements relate to the artefacts that compose the software’s source code, e.g. software applications,
components, files, classes, and so on and so forth.

Each of the requirements will be attached to the lowest possible level, i.e. in relation to the first quality
characteristic to which it chronologically contributes.

For example, let us suppose that we are expressing a requirement relating to cyclomatic complexity [Ref. 7].
This internal property impacts the unit test efforts (therefore the Testability) and the understanding (therefore the
maintainability). We will attach the requirement to the first subcharacteristic, which is the unit test and therefore
to the testability.

A typical requirement, would be to be within a threshold limit for a structural measure, or the respect of a
syntactical rule. We provide as an appendix some Quality Model examples for various languages.

The SQALE Method Definition Document

Version: 1.1 10

5. SQALE Quality Model Tailoring

To preserve all of the SQALE Method’s properties and benefits, its Quality Model adaptation and customisation
possibilities are limited, these being the following:

5.1. Tailoring the Characteristics List

In a context that justifies it, it is possible to regard certain characteristics as non-applicable. In this case, the
associated subcharacteristics and requirements are deleted from the Quality Model.

The characteristics which can be regarded as non-applicable are the following:

- Efficiency

- Usability

- Security

- Maintainability

- Portability

- Reusability

In every case, the order of the characteristics must remain unchanged in relation to the SQALE Quality Model
presented in Figure 3.2.

5.2. Tailoring the Subcharacteristics List

For the subcharacteristics resulting from the lifecycle activities and if the context justifies it, some of them can
be deleted if they correspond to a non-applicable activity in the context of the software that is being assessed.
For example, the optimisation of the ROM memory.

For the other subcharacteristics (corresponding to requirement categories), some of them can be deleted,
reorganised or added according to the context of the software that is being assessed. The guideline is to obtain
subcharacteristics that group the requirements according to logic that contributes to the analysis, the
understanding or the remediation of nonconformities.

5.3. Tailoring the Requirements List

All of the requirements represent the software’s source code’s quality objectives. They therefore have to be
adapted according to the expectations and needs of the project or organisation.

To do so, they have to be attached to one subcharacteristic of the model in compliance with the previously stated
principles.

5.4. The Quality Model and the Technical Debt conce pt

All requirements included within the SQALE Quality Model shall be considered as incurring Technical Debt. In
addition, all issues considered by a team as incurring Technical Debt should have a related requirement in the
Quality Model.

The Quality Model should be incorporated within the Definition(s) of Done of an Agile Project.

The SQALE Method Definition Document

Version: 1.1 11

4. The SQALE Analysis Model

1. Structure

The SQALE Analysis Model contains on the one hand the rules that are used for normalising the measures and
the controls relating to the code, and on the other the rules for aggregating the normalised values.

The SQALE Method normalises the reports resulting from the source code analysis tools by transforming them
into costs. To do this remediation functions and non-remediation functions are used. These concepts are
described in the following paragraphs.

The SQALE Method defines rules for aggregating costs, either in the Quality Model’s tree structure, or in the
hierarchy of the source code’s artefacts.

2. Remediation Functions

When a Quality Model’s requirement is formulated as a rule that has to be obeyed, the associated measure,
collected by the analysis tools, is the detected number of violations per artefact.

The remediation function’s goal is to normalise findings related to one requirement into remediation costs. This
normalization is performed from the technical team point of view.

In order to do this normalisation, one can simply use a multiplicative factor that corresponds to the average
remediation cost unit for bringing the code into conformity. The value of this factor will depend on the activities
that have to be carried out in order to remedy the non-conformity.

This value can be very low in the case, for example, where the violation relates to one of the code’s formatting
requirements. The remediation can be carried out by an IDE functionality. As this change of the code does not
impact the code generated by the compiler, it does not require a verification and validation cycle.

This value can, in other cases, be much higher because the code will have to follow a verification and validation
cycle that is both complete and costly. It is for example the case when the code’s structure or architecture has to
be changed in order to make it conform to the Quality Model.

In order to get a more precise estimation of the remediation cost, it possible to normalize with a more complex
function that use as parameters some code’s internal attributes as well as the measured value. This is particularly
the case when a Quality Model requirement consists of keeping a measure within a certain interval (example: a
function must have a cyclomatic complexity below 15)

In order to respect the representation condition, a remediation function must:

- Be strictly monotonic on the interval (or the intervals) corresponding to the non-conforming values.

- Be constant or equal to 0 on the interval (or the intervals) corresponding to the conforming values.

Remediation function examples are given in the appendix.

3. Non-remediation Functions

The decision to fix a non-conformity has an associated remediation cost and a negative impact on the
development plan. Symmetrically, to keep and deliver a non-conformity has a negative impact on the business
plan. This negative impact has an associated cost which is the non-remediation cost of the non-conformity.

The non-remediation function’s goal is to normalise findings into non-remediation costs. This normalization is
performed from the Business or Product Owner point of view.

The SQALE Method Definition Document

Version: 1.1 12

This Business Impact should represent all the damages inferred by the non-conformity, damages that can be
numerous. This includes, but is not limited to:

- A more expensive remediation cost that need to be spent in a later phase of the lifecycle

- A more expensive maintenance cost (enforced by example by duplicated code)

- Additional resource costs, such as CPU power, memory, disk space (enforced by example by violations
of efficiency related requirements)

- Extra man power to operate the software (longer installation, configuration, back-ups…)

- Costs for investigating and fixing a bug resulting from a non-conformity

- A provision to cover the related risks of leaving non-conformities

All these inferred costs may be difficult to estimate and to model within a non-remediation function. Relevant
stakeholders should be involved in the estimation of the non-remediation cost to each requirement, for example :

- Maintenance team (cost of bugs, cost of lack of comments, cost of duplicated code…)

- Production team (cost of extra hardware)

- Business team (cost of unavailability, cost of low performances…).

It is possible to use a global approach based on the penalty concept. It is the penalty that the product owner will
ask as a compensation for delivering the product with a violation. Below this amount, he/she won’t accept the
violation. For this amount, he/she considers that the penalty is an acceptable compensation and that it covers all
the damages, of all types, that result or may result from the violation.

The set of non-remediation functions shall represent, from the Product Owner point of view, the relative
importance of the different non conformities that developers may leave in the source code.

In order to respect the representation condition, a non-remediation function must:

- - Be strictly monotonic on the interval (or the intervals) corresponding to the non-conforming values.

- - Be constant or equal to 0 on the interval (or the intervals) corresponding to the conforming values.

4. Aggregation Rule

Within the SQALE method, all aggregations are made by additions. This applies to remediation costs and non-
remediation costs.

This is the case in the Quality Model’s requirement hierarchy. By application of the principle that in order to
estimate the remediation or non-remediation cost of a characteristic or a subcharacteristic, all the estimates of
the costs of the related non-conformities will be added.

This is also the case in the artefact hierarchy of the source code. In order to estimate an artefact’s remediation or
non-remediation cost, the estimated costs for all of its constituent elements have to be added.

5. Tailoring the Analysis Model

5.1. Tailoring the Remediation Functions

Remediation costs are depending on the local rules and processes of the organisation or project concerned. The
remediation functions can be tailored in order to correspond as closely as possible to the real remediation costs
for the evaluated software. This customisation must be carried out in compliance with SQALE’s fundamental
principles.

The SQALE Method Definition Document

Version: 1.1 13

5.2. Tailoring the Non-remediation Functions

Non-remediation costs are depending on the local rules, processes and business of the organisation or project
concerned. The non-remediation functions can be tailored in order to correspond as closely as possible to the
real non-remediation costs for the evaluated software. This customisation must be carried out in compliance
with SQALE’s fundamental principles.

5.3. Tailoring the Aggregation Rules

The SQALE aggregation rules cannot be tailored.

5.4. The Analysis Model and the Technical Debt conc ept

The set of remediation functions associated to a Quality Model constitutes a “Technical Debt principal”
estimation model.

The set of non-remediation functions associated to a Quality Model constitutes a “Technical Debt interest”
estimation model.

The SQALE Method Definition Document

Version: 1.1 14

5. The SQALE Indices

All of the SQALE indices represent costs. All the indices are measured in relation to the same unit, which is
either a monetary unit, a work unit or a symbolic unit. In every case, the indices have values on a scale of the
ratio type. They can therefore be manipulated with all the operations that are authorised for a scale of this type
[Ref. 6, Page 57].

1. Absolute Indices

1.1. Characteristic Indices

For any element of the artefact hierarchy of the source code’s, the remediation cost relating to a given
characteristic can be estimated by adding up all of the remediation costs linked to the detected non-conformities
noted with regard the requirements linked to the characteristic.

The SQALE Characteristic Indices are the following:

SQALE Testability Index: STI

SQALE Reliability Index: SRI

SQALE Changeability Index: SCI

SQALE Efficiency Index: SEI

SQALE Usability Index: SUI

SQALE Security Index: SSI

SQALE Maintainability Index: SMI

SQALE Portability Index: SPI

SQALE Reusability Index: SRuI

1.2. Quality Index: SQI

For any element of the artefact hierarchy of the source code, the remediation cost relating to all of the Quality
Model’s characteristics can be estimated by adding up all of the remediation costs linked to all of the Quality
Model’s requirements.

This derived measure is called: the SQALE Quality Index: SQI.

The SQALE Quality Index is a precise implementation of the concept of “Technical Debt” commonly used to
manage agile projects. The SQI represents the principal of the Technical Debt associated to the source code.

1.3. Consolidated Indices

In order to give a synthesised representation of the source code’s quality, SQALE defines consolidated indices.
These indices aggregate the Characteristic Indices in the following way:

• The consolidated index of a given characteristic is equal to the sum of its index with all the indices of
the previous characteristics contained in the Quality Model that is being used.

For example, in the case where the Quality Model has kept the nine characteristics of Figure 3.2:

SQALE Consolidated Reliability Index: SCRI = STI + SRI

SQALE Consolidated Changeability Index: SCCI = STI + SRI + SCI

The SQALE Method Definition Document

Version: 1.1 15

SQALE Consolidated Efficiency Index: SCEI = STI + SRI + SCI + SEI

SQALE Consolidated Security Index: SCSI = STI + SRI + SCI + SEI + SSI

…

…

SQALE Consolidated Reusability Index: SCRuI = STI + SRI + SCI + SEI + SSI + SMI + SPI+ SRuI

For reasons of coherency, the Consolidated Testability Index is defined as:

SCTI = STI

The use and the interpretation of these consolidated indices are detailed in the appendix. They are used to feed
the “SQALE Pyramid” indicator.

1.4. Business Impact Index: SBII

For any element of the artefact hierarchy of the source code, the non-remediation cost can be estimated by
adding up all the non-remediation costs linked to all the Quality Model’s requirements.

This derived measure is called: the SQALE Business Impact Index: SBII.

The SQALE Business Impact Index represents the Business perspective of the non-conformities of the source
code. It also represents the interest part of the Technical Debt of the source code.

2. Index Densities

2.1. Code Size Measurement

A density index has to be associated with each absolute index defined in the previous paragraph. To do this, the
absolute index has to be divided by a measure representing the size of the concerned artefact.

The user or the implementer has to choose, according to the context, a measure that approximates this objective,
for example the number of effective code lines, the cyclomatic complexity as per McCabe [Ref. 7], the number
of instructions, or the Halstead volume [Ref. 8].

2.2. Index Density

A density index has to be associated with each absolute index defined in the previous paragraph. The code size
measure that is adopted for calculating these densities has to be specified.

 Index Density Table:

Index Acronym Density Index Acronym Density Index Name

STI STID SQALE Testability Index Density

SRI SRID SQALE Reliability Index Density

SCI SCID SQALE Changeability Index Density

SEI SEID SQALE Efficiency Index Density

SUI SUID SQALE Usability Index Density

SSI SSID SQALE Security Index Density

SMI SMID SQALE Maintainability Index Density

SPI SPID SQALE Portability Index Density

SRuI SRuID SQALE Reusability Index Density

The SQALE Method Definition Document

Version: 1.1 16

Index Acronym Density Index Acronym Density Index Name

SBII SBIID SQALE Business Impact Index Density

For example: The SQALE Testability Index Density

 STID: SQALE Testability Index Density = STI/KSLOC

Where KSLOC is the size of the artefact expressed in thousands of instruction lines.

Comment:

Although one can in theory calculate index densities on artefacts or groups of artefacts of any size, one should
in practice be careful with densities calculated on a single file. A file of very small size can then have a very
high density.

The SQALE Method Definition Document

 Version: 1.1

17

6. The SQALE Indicators

The SQALE Method defines three synthesised indicators. Each user or implementer can define others according
to his or her information needs. The appendix contains some examples of indicators.

These three SQALE indicators, which relate to the quality characteristics, enable a highly synthesised
representation of an application’s quality to be given.

1. The SQALE Rating

The rating consists of producing a derived measure on an ordinal scale. An example of such a scale is: Good,
Average, Bad.

In the SQALE Method, this one is done on a scale of five values or more (for example with six values: A, B, C,
D, E and F).

The rating for a given artefact results from a comparison of the artefact’s estimated remediation cost with an
estimate of the artefact’s development cost.

To do this, one defines in advance a grid such as that in Figure 6.1, conveying the degree of acceptability of the
remediation cost in relation to the development cost.

Figure 6.1. a 5 levels SQALE Rating Grid Example

Detailed example:

If one has chosen to express the cost in hours and the size in KSLOC, and if the average cost of 1 KSLOC has
been estimated at 100 hours. The grid in Figure 6.1 is used as follows:

According to the grid example of Figure 6.1, an artefact that has a development cost estimated at 500 hours
(because its size is 5 KSLOC) and a SQALE Quality Index (which is the principal of the Technical Debt) of 15
hours, will have a ratio of 15 hours/500 hours = 3%. Its SQALE rating will be “C”.

2. The SQALE Pyramid

This graph represents, for a given software application, all of the collected indices. In view of the dependence of
the model’s quality characteristics on the lifecycle, it helps appropriate decisions to be made.

This graph contains on the one hand the absolute indices, and on the other, the consolidated indices, following
the chronology of the Quality Model’s characteristics. This indicator has the following form:

Rating Up to Color

A 1%

B 2%

C 4%

D 8%

E ∞

The SQALE Method Definition Document

 Version: 1.1

18

Figure 6.3. SQALE Pyramid Example

3. The SQALE Debt Map

This graph represents artefacts of the evaluation scope plotted on two dimensions. The first one (X axis) is the
Technical Debt axis (SQI), the second one (Y axis) is the Business Impact axis (SBII). This graph uses
logarithmic scales.

When the information is available, the size of dots may depend on a third measure like the business value of the
artefacts.

Figure 6.4 SQALE Debt Map Example

The SQALE Method Definition Document

 Version: 1.1

19

4. Steering a project with the appropriate indicato rs
When monitoring the code quality of a development or maintenance project, one will need two types of
indicators.

• The first type of indicators is representing the status and the trends of the project regarding its goals.
The SQALE Rating and all the SQALE indexes belong to such type of indicators.

• The second type of indicators is providing analysis capabilities for supporting decisions. The SQALE
Pyramid and the SQALE Debt Map belong to such type of indicators.

The SQALE Method Definition Document

 Version: 1.1

20

7. The SQALE Conformity Criteria

In order to be in conformity with the Version 1.1 of the SQALE Method, an implementation must meet the
following criteria:

- Support the SQALE Method’s fundamental principles

- Enable a SQALE Quality Model to be defined and set up

- Enable a SQALE Analysis Model to be defined and set up

- Produce the SQALE Characteristic Indices (absolute and consolidated) corresponding to the models set
up

- Produce the SQALE Quality Index (SQI) corresponding to the models set up

- Produce the SQALE Business Impact Index (SBII) corresponding to the models set up

The other elements of the method, such as the index densities and the indicators, are optional.

The SQALE Method Definition Document

Version: 1.1

21

Appendices

1. The representation condition

The representation condition is an important component of the theory of measure.

As a reminder and as explained in [Ref 6 p28]:

"Measurement is defined as the mapping between the empirical and the formal world. A measure is a number or
symbol assigned to an entity in order to characterise an attribute."

In order to set up a quality measure system, some rules have to be observed:

"We want the behaviour of the measures, in the number system to be the same as the corresponding elements in
the real world, so that by studying the numbers, we learn about the real world. Thus we want the mapping to
preserve the relation. (...)

The representation condition asserts that a measure mapping M must map entities into numbers and empirical
relations into numerical relations in such a way that the empirical relations preserve and are preserved by the
numerical relations." [Ref. 6 p31]

2. Example of Breakdown as Subcharacteristic

The following figure presents an example of a SQALE Quality Model with seven characteristics and the
selected subcharacteristics:

Figure 8.1. Example of Levels 1 and 2 of a SQALE Quality Model

The SQALE Method Definition Document

Version: 1.1

22

3. Quality Model Examples

The following figure presents an example of a SQALE Quality Model for the C++ language.

Figure 8.2. SQALE Quality Model Example for the C++ Language (tailored to 5
characteristics)

The following figure presents an example of a quality model for the Java language.

Figure 8.3. SQALE Quality Model Example for the Java Language (tailored to 5
characteristics)

Characteristic SubCharacteristic Generic Requirement Description
Maintainability Understandability No use of double pointer

Maintainability Understandability No unstructured statements (goto, break outside a switch...)

Maintainability Understandability No use of "continue" statement within a loop

Maintainability Understandability No use of ternary operators
Maintainability Understandability File comment ratio (COMR) > 25%

Maintainability Readability Capitalization rules for identifying code elements are followed

Maintainability Readability The code follow consistent block formatting rules

Maintainability Readability The code follow consistant whitespace rules

Maintainability Readability The code follow consistant indentation rules

Maintainability Readability File size (LOC) <1000
Maintainability Readability All declarations are done in a consistent order

Maintainability Readability No commented-out code

Efficiency ROM related efficiency All statements are useful

Efficiency RAM related efficiency Class depth of inheritence (DIT) <8

Efficiency RAM related efficiency No unused variable, parameter or constant in code

Changeability Architecture related changeability Class weighted complexity (WMC) <100
Changeability Architecture related changeability Coupling between objects (CBO) <7

Changeability Logic related changeability All if, for, while structures have a clear scope delimitation

Changeability Data related changeability No explicit constants directly used in the code (except 0,1, True and False)

Reliability Architecture related reliability No multiple inheritance of implementation classes

Reliability Resource related reliability No use of freed or unallocated memory

Reliability Statement related reliability No ambiguous statement execution order
Reliability Logic related reliability No assignement within a condition

Reliability Logic related reliability Invariant iteration index

Reliability Data related reliability No use of unitialized variables

Reliability Data related reliability All types are safely converted

Reliability Data related reliability No module with a variable number of parameters

Reliability Data related reliability All types are explicitly declared (no Void *)

Testability Unit Testing testability All modules are reachable
Testability Unit Testing testability No duplicate part over 100 token

Testability Unit Testing testability Number of ind. test paths within a module (v(G)) <15

Testability Unit Testing testability Number of parameters in a module call (NOP) <7

Characteristic SubCharacteristic Generic Requirement Description
Maintainability Understandability No unstructured statements (goto, break outside a switch...)
Maintainability Understandability No use of "continue" statement within a loop
Maintainability Understandability File comment ratio (COMR) > 35%
Maintainability Readability Variable name start with a lower case letter
Maintainability Readability The closing brace '}' is on a standalone line
Maintainability Readability The code follow consistant indentation rules
Maintainability Readability File size (LOC) <1000
Maintainability Readability No commented-out code
Efficiency RAM related efficiency Class depth of inheritence (DIT) <8
Efficiency RAM related efficiency No unused variable, parameter or constant in code
Changeability Architecture related changeability Class weighted complexity (WMC) <100
Changeability Architecture related changeability Class specification does not contains public data
Changeability Logic related changeability If, else, for, while structures are bound by scope
Changeability Data related changeability No explicit constants directly used in the code (except 0,1, True and False)
Reliability Fault Tolerance Switch' statement have a 'default' condition
Reliability Logic related reliability No assignement ' =' within 'if' statement
Reliability Logic related reliability No assignement ' =' within 'while' statement
Reliability Logic related reliability Invariant iteration index
Reliability Data related reliability No use of unitialized variables
Testability Integration level testability No "Swiss Army Knife" class antipattern
Testability Integration level testability Coupling between objects (CBO) <7
Testability Unit Testing testability No duplicate part over 100 token
Testability Unit Testing testability Number of ind. test paths within a module (v(G)) <11
Testability Unit Testing testability Number of parameters in a module call (NOP) <6

The SQALE Method Definition Document

Version: 1.1

23

4. Remediation Function Examples

In order to associate a remediation function with each of the model’s requirements, one can do it individually by
estimating the average remediation cost of a non-conformity for each requirement.

One can also apply a logic consisting of analysing the “remediation cycle” which will be engaged at the time of
the remediation of the nonconformities.

In the following example, in a given organisation and in the light of its context, the requirements have been
classified in five types as defined in the following table. All the requirements of the same type have been
associated with the same remediation factor.

Figure 8.4. Example of Remediation Factors associated with various types of non-
conformity

Figure 8.5 shows an example of a remediation function that one can apply for calculating the remediation cost
when the required comment ratio has not been reached. In this example, the threshold is 30%.

For a given artefact, Value “a” corresponds to the cost necessary for adding comments and for bringing into
conformity an artefact that has no comment (and for carrying out the possible corresponding verification cycle).
Value “a” depends on the size of the file and consequently on the number of comments line corresponding to a
ratio of 30%.

Value “b” corresponds to the cost consisting of adding only one comment line (and of carrying out the possible
corresponding verification cycle).

Figure 8.5. Example of a Remediation Function for the Comment Ratio

Figure 8.6 shows an example of a remediation function that one can apply to calculate the remediation cost
when one cuts an artefact into two or more in order to reduce its coupling or its cyclomatic complexity. In this

NC Type Name Description Sample Remediation Factor

Type1 Corrigible with an automated tool, no risk Change in the indentation 0.01

Type2 Manual remediation, but no impact on compilation Add some comments 0.1

Type3 Local impact, need only unit testing Replace an instruction by another 1

Type4 Medium impact, need integration testing Cut a big function in two 5
Type5 Large impact, need a complete validation Change within the architecture 20

10% 20% 30%

Model threshold

40%

a

b

Cost to open a file

Remediation
Cost

10% 20% 30%

Model threshold

40%

a

b

Cost to open a file

Remediation
Cost

The SQALE Method Definition Document

Version: 1.1

24

case, the threshold is 15. Value “C” is the cost corresponding to the cutting into 2. When the artefact has a
complexity cyclomatic higher than three times the threshold, it has to be cut into 4, that is to say a cost estimated
twice “C”, which establishes the slope of the straight line.

Figure 8.6. Example of a Remediation Function for Cutting an Artefact

5. Non-Remediation Function Examples

In order to associate a remediation function with each of the model’s requirements, one can do it individually by
estimating the average non-remediation cost of a non-conformity for each requirement.

One can also apply a logic consisting of associating a criticality to each requirement.

In the following example, in a given organisation and in the light of its context, the requirements have been
classified in five types as defined in the following table. All the requirements of the same type have been
associated with the same non-remediation factor. This represents the priority of the different types of non-
conformities as perceived by the Product Owner.

Figure 8.7. Example of Non-Remediation Factors associated with various types of non-
conformity

15 30 45 60

c

2c

15 30 45 60

c

2c

NC Type Description Sample Non-Remediation
Factor

Blocking Will or may result in a bug Division by zero 5 000

High Wil have a high/direct impact on the maintainance cost Copy and paste 250

Medium Will have a medium/potential impact on the maintainance cost Complex logic 50

Low Wil have a low impact on the maintainance cost Naming convention 15

Report Very low impact, it is just a remediation cost report Presentation issue 2

The SQALE Method Definition Document

Version: 1.1

25

6. Examples of additional Indicators to the SQALE
Indicators
The following Figures give four examples of indicators built upon the SQALE indices.

Figure 8.8. Comparative Histogram of SQALE Maintainability Index Densities

Figure 8.9. Historical Trend Graph of the Technical Debt (SQALE Quality Index)
according to an application’s various parts

The SQALE Method Definition Document

Version: 1.1

26

Figure 8.10. Historical Trend Graph of the Technical Debt (SQALE Quality Index)
according to the impact level of the violations

Figure 8.11. Application Portfolio Management with a Map representation

The SQALE Method Definition Document

Version: 1.1

27

7. The SQALE Quality Model’s Two Points of View

The SQALE Quality Model has the characteristic of supporting two points of view. On the one hand, the
developer’s point of view through the subcharacteristic and characteristic indices. Those indicating to him the
presence of non-conformities impacting the precise activities of the lifecycle. On the other, the user’s or the
“owner’s” point of view with the consolidated characteristic indices that represent the totality of the non-
conformities to be remedied in order to reach the phase of the lifecycle concerned under the best conditions.

For example, the absolute maintainability index represents the remediation cost for the requirements directly
linked to maintainability. But in order for a software application to be able to be easily maintained in its
operating phase, it has to be testable, reliable, upgradable, performing and maintainable. It is therefore the
consolidated maintainability index that best represents the software’s status in relation to that objective.

This duality of the points of view is synthesised in Figure 8.

8.12. The SQALE Quality Model’s Two Points of View

The SQALE Method Definition Document

Version: 1.1

28

8. Use Scenario of the SQALE Method: Example 1

This paragraph gives a detailed example of a SQALE Method use scenario. The chosen example describes how
an organisation can use the SQALE Method for properly controlling the development of a project that has been
subcontracted to a service company.

The main stages are the following:

1 - The project manager identifies the quality objectives for the application that he is going to have developed.
These objectives are for example very great reliability and a good quality for the remainder of the characteristics
of the source code.

If the organisation does not already have a SQALE Quality Model, it develops one that lists all of the
requirements relating to the code’s quality.

2 - When the contract is drawn up, the requirements relating to the code’s quality are specified by contract. That
results in the communication of the following elements:

- The SQALE Quality Model which will be used as reference (i.e. the precise requirements for the
language used)

- The remediation functions used to calculate the remediation costs

- The target thresholds for various index densities in agreement with the targeted objectives

For example, if the size is expressed in KSLOC and if reliability is a strong requirement:

- STID < 0.1

- SRID < 0.1

- Other characteristic SQALE indices densities < 3

3 - The subcontractor, during the course of the project, reports the value of the various indicators at the time of
the steering committee meetings in order to assure the client that the code’s quality objectives will be met.

4 – At the time of the delivery, the subcontractor provides the analysis results for proving that the contractual
thresholds have been met.

5 - If necessary, at the time of the acceptance test, the organisation checks with its own tools that the
requirements have indeed been met.

9. Use Scenario of the SQALE Method: Example 2

This paragraph gives another detailed example of a SQALE Method use scenario. The chosen example
describes how an organisation can use the SQALE Method for properly managing the quality of the code
developed by an agile project. This is performed by continuously monitoring the Technical Debt of the project.

The main stages are the following:

1 - The project’s team identifies the quality objectives and the associated requirements for the code that will be
developed. Any violation of these requirements will incure Technical Debt.

If not provided by the organisation, the team develops the SQALE Quality Model and the SQALE Analysis
model that will be used to estimate the Technical Debt accumulated by the project.

The SQALE Method Definition Document

Version: 1.1

29

2 – The continuous integration system is configured to calculate the SQI (that estimates the Technical Debt) and
the associated SQALE indicators at each build.

3 - At each build the team monitors and analyses the Technical Debt of the project (SQI). This index is used to
monitor the project in addition to other indicators like backlog and velocity. The SQALE pyramid and the
SQALE debt map are used to analyse in detail the Technical Debt and decide the priorities and the best moment
to start some refactoring activities. Normally, refactoring should start by addressing the issues related to the
lowest layers of the SQALE Quality Model, which means Testability and Reliability.

10. Comments

Readers are invited to provide their comments or any problems noted in relation to this document, be they on
technical or presentational aspects. This can be done on the website: http://www.sqale.org

