The SQALE Method
for Managing Technical Debt

Definition Document

Author: Jean-Louis Letouzey
Version: 1.1

March 31, 2016

Table of Contents

IR 1o o T 1T SO 4.
VY 1 o o R 4
2. 0wnership and USEr LICENCE.coooiiiiii ittt e aa e e 4.
TS Yodo] o L= =T ol @]] 1=Tox 1)Y= U
I 01 =T PRSPPI
5. REfErenCe DOCUMENESuuiiiiiirieiiieeeeeeeaaaaasasae e s sttt bbb s ereeeeeeeeeaeeaaaaaaaaaeeaaeeeens

2. FUNdamental PriNCIPIESoc.uuueiiie s ettt te e e s ettt ee e e s ettt te e e e e s sbae e e e e e e snsnbbeeeeeesannsbbeeeeeennnes

3. The SQALE Quality Model
I T LT = L] (W od (1 SRR
2. The CharacteristiCs LEVEI ... e e e e e e e e e
3. The Subcharacteristics Level
4. The Requirements Level
5. SQALE Quality Model Tailoring

5.1. Tailoring the Characteristics List

5.2. Tailoring the SubcharacteristiCs LiStcccccveiiiiiiiiiiiiiiiece e 10
5.3. Tailoring the RequiremMents LISt ..o 10
5.4. The Quality Model and the Technical Debt CElICe............coocviieeiiiiiiiiiiiiee s 10
4. The SQALEANAIYSIS MOUEIuviiiiiiiiiiiiiiiee ettt e e e nnees 11
I 1 U Tod (1 TP PURUPPRPPPIN 11
2. Remediation FUNCHONS.........ooi i e e e e e e e e e e e e e e e e aaaaeeeeaeeens 11
3. Non-remediation FUNCHONScoiiiieee e 11
4. AQQregation RUIEccciuiiiiiii i ceee ettt e ettt e e s s sbt e e e e s s nebb e e e e e ennnraaeeas 11
5. Tailoring the AnalysisS MOAElooo oo 12
5.1. Tailoring the Remediation FUNCLIONS .. ccceeeiviiiiiiiiiiiiiiiieeieeeeeeeee e 12
5.2. Tailoring the Non-remediation FUNCLIONS..........ccooioiiiiiiieeeeee e 13
5.3. Tailoring the Aggregation RUIEScocceeiiiiiiiiiiiiii e 13
5.4. The Analysis Model and the Technical Debt @lCccooeeeeeeieeeniriniieiiees 13
5. THe SQALE INQICES.... .ot ettt e e e e e e e e e et a e e e e e e e ee e s ba it e eeeaeeeeessasanans 14
Y o 1Yo 11 (= T o o PP 14
1.1. CharacteriStiC INAICESuuiiiiiiiiieeeeee eaanns 14
1.2. Quality INAeX: SQI ..uviiiiiiiiiiiiiiie e 14
1.3. Consolidated INAICEScooee i er e e e e e e e e e e e e e e e e e e e aaans 14
1.4. Business Impact INdeX: SBIloooiiiiiiiiii e e e e 15
2. INAEX DENSIIIES ...ttt ettt ettt ettt e e e e e e eeeaaeaaaaaaaeaeaaaeaaeaaaaann 15
2.1. COdESIZE MEASUIEMENTeiiiiiiiiiiiiiee it erree ettt ettt et neeeeenees 15
2.2. Index Density
6. The SQALE INAICALOIScciiiiiieiei ettt aeeeeeeeeaaas
1. The SQALERALING ..oeeeeeiieiiie oo memmme ettt e e e e e e e eaaeaeaaaeaeaeeens
2. THE KIVIAL ..ottt ettt e e e e e sb e s et e e e e
3. The SQALEPyramid
4. The SQALE DDt IMAP ...evviiiiiiiiiiiiie ettt e e s e e e e sbbaeee s 18
5. Steering a project with the appropriate iNdICRLO.............ccvveiiieiiiiiiiiee e 19
7. The SQALECONTOIMILY CrIEIIA ...icvvvviiieeeiiiieie st e e sttt tee e s et eee s e essbeseeeeessnsnneeeessannnees 20
S Y o] 0= g Lo [Tot T PP PR ROTPPP 21
1. The representation CONAILIONcomreeeeeeesiiniiiiiee e e sre e e e e ee e e e s anbbaeeeens 21
2. Example of Breakdown as SUbCharaCteriStiCum . uocoiiiiiiiiiiieiiiiiiiiee e 21
3. Quality MOdel EXAMPIESouuieiiieiiee st eeeeeeeetteeeee e e e eeeeeeeeeeeeeaeeeeseaeeeaaesaaasaaaannnnnnnnes 22
4. Remediation FUNCHION EXAMPIES ..ot e e e e e 22
5. Non-Remediation FUNCLION EXaMPIESociiiieriiiiiiiiiiiie e 24

6. Examples of additional Indicators to the SQAIDBICAtOrscccccvviiiieeiiiiiiiieeeaeeenn 25

7. The SQALEQuality Model's Two Points Of VIEWoiieeeeiiiiiiiiiieiiieieeeeeeeeeeee e 27
8. Use Scenario of the SQALE Method: Example Lcoooeiiiiiiiiiiiii s 28
9. Use Scenario of the SQALE Method: EXample .2oooveiiiiiiiiiiii s 28

L0. COMIMENTS ettt e eeeee et e s eeeemeer et e st e ea e e et e e et e et e s et e s eseeseateareesaatesteereneesereeseeeenens 29

The SQALE Method Definition Document

List of Figures

3.1. The SQALEQuality Method’s General StruCtUrecooeeveeiiiiii e 8
3.2. The SQALE Quality Method's CharaCteriStiCS........uuuviiviiiiiiieeiieeeeee e 8
3.3. The Subcharacteristics Resulting from LIfEeYBELIVItIESoocvviiiiriiiiiiiiie s 9
6.1. SQALE Rating Grid EXQmMPIEcooiiiiiiceeee ettt 17
6.3. SQALE Pyramid EXamPIe......ccccoiiiiii et e 18
6.4. SQALE Debt Map EXAMPIEcoiiiiiiiiiiiieiee ettt e e nnnbneeeas 18
8.1. Example of Levels 1 and 2 of a SQALE Qualitgdd|ooovviieiiiiiiiiiiiiieee e 21
8.2. SQALE Quality Model Example for the C++ Langaa...........ccoooviiiieieeiiiiiiieeeee s e 22
8.3. SQALE Quality Model Example for the Java Laag@!ccoeeeiviiiiiiieeeniiiiiiccmenieee e 22
8.4. Example of Remediation Factors associated watlous type of non-conformity 23
8.5. Example of Remediation Function for the COMIMRAILEeevevieeiiiiiiiiiee et e 23
8.6. Example of Remediation Function for Cuttingfatefactcccccoviiiiiiiiiiiiiiicree e, 24
8.7. Example of Non-Remediation Factors associaitdvarious types of non-conformity 24
8.8. Comparative Histogram of SQALE Maintainabiligex Densitiescccccceevviiiirimnenenns 25
8.9. Historical Trend Graph of the Technical Detitading to an application’ various parts 27
8.10. Historical Trend Graph of the Technical Dattording to the severity of the violations 26
8.11. Application Portfolio Management with a Mapresentationccccccovvvivvvesimcmmneveeennn 26
8.12. The SQALE Quality Model's TWo Points Of VIEW.......cccccimiiiiiiiiiiiiiiiiiiiieeeeeeeeeee e 27

Version: 1.1

The SQALE Metho Definition Documer

1. Introduction

1. Version

This document describes Version 1.1 of tBQALE Method Goftware Quality Assessment based on
Lifecycle Expectationg. The latest version of it can be accessed ow#issite at http://www.sgale.org

2. Ownership and User Licence

This method is the intellectual propertyin§pearit (previously named DNV IT GS France).

This work is licensed under the Creative CommonsilAttion-NonCommercial-NoDerivs 3.0 Unported

' [@0Sle)

This license is available on-line at the addresg:Mcreativecommons.org/licenses/by-nc-nd/3.@legde or
by post to Creative Commons, 171 Second Streete 30D, San Francisco, California 94105, USA.

You are free

@ to Share- to copy, distribute and transmit the work

Under the following conditions:

Attribution - You must attribute the work in the manner spediby the author or licensor (but not in
any way that suggests that they endorse you oryseiof the work).

@ Noncommercial- You may not use this work for commercial purposes

No Derivative Works - You may not alter, transform, or build upon thisrk.
With the understanding that:
- Any of the above conditions can be waived if gai permission from the copyright holder.

- Where the work or any of its elements is in thiblit domain under applicable law, that statusis i
no way affected by the license.

- In no way are any of the following rights affettiey the license:
» Your fair dealing or fair use rights, or other @pable copyright exceptions and limitations;
* The author's moral rights;

* Rights other persons may have either in the wafitor in how the work is used, such as
publicity or privacy rights.

Notice - For any reuse or distribution, you muskeelear to others the license terms of this work.

4 Version: 1.1

The SQALE Method Definition Document

inspearit declines to consider any software implementatibthe method as a derived work. Software editors
can freely implement the SQALE method in their spolhether they are licensed commercially or asope
source.

inspearit declines to consider any usage of the methoddesieed work.

3. Scope and Objective

As the method’s name specifies, the SQALE methtates to the evaluation of software quality. Th@/AE
Method can be applied to all deliverables and gfiresentations of the software, such as UML modéis.
scope of the version described in this documelimised to the evaluation of so-called source files

The objective of this version of the SQALE Methadtd support the evaluation of a software applicesi
source code in the most objective, accurate, rejibte and automated way possible. It is also tovide
guidance and support for improving the quality loé tsource code. This is performed by implementing a
leveraging the concept of Technical Debt.

This document presents the quality model, the amatypodel, the indices and the indicators.

4. Limitations

This document focuses on the description of thehotetand its concepts. Other related documents coweil
cover subjects such as the precise definition gatemeasures used, the recommended code evaluaéthod
and the manner of using and interpreting the irsdared the SQALE indicators [Ref. 9].

Similarly, it does not describe the reasons thatHad to its development nor the explanations eaming the
justification of certain technical choices and #uvantages that can be drawn from them. This irddon, at
least partially, has already been presented inldlcements referenced below [Ref. 1 to 3].

It is not seeking to describe how the SQALE Metkbduld be implemented in tool form. Users and &alilors
alike are free to choose or to construct a solutigriementing the method described in this document

5. Reference Documents

Ref.1 |J-L Letouzey, Th. Coqg, The SQALE Models fAssessing the Quality of Software Source (,
DNV IT GS France, Paris, white paper, Septembef200

Ref.2 | J.L. Letouzey, Th. Coq, The SQALE Models for Assegdime Quality of Real Time Source Co
ERTSS 2010, Toulouse, May 2010

Ref. 3 |J-L. Letouzey, Th. Coq, The SQALE Analysis Moc- An analysis model compliant with t
representation condition faassessing the Quality of Software Source Codel I2A2010, Nice
August 2010

Ref. 2 |ISO, International Organization for StandardisatiSO/IEC 2501 2011, Systems and softwal
engineering -- Systems and software Quality Requergs and Evaluation (SQuaRE)System an
software quality models

Ref. 5 D. Spinellis, Code Quality: The Open SoupPegspective, ISBN: 0-321-16607-8, Addisdfesley.
2006

Ref. € N.E. Fenton, SL. Pfleeger, Software Metrics: A Rigorous & Praatiéd\pproach, Second Editig
ISBN 053495425-, PWS Publishing Company, Bosto®,719

Ref. 7 |Th. McCabe, A. H. Watson, Structured Testing: A tifes Methodology Using the Cycloma
Complexity Metric, National Institute of Standardsd Technology, Special Publication 5285,
1996

Ref. 8 M.H. Halstead, Elements of Software Scieimw York, Elsevier North-Holland, 1977

Ref.9 | J. L. Letouzey, M. llkiewicz, Managing Tedtal Debt with the SQALE Method, IEEE Softwdre
November 2012

Version: 1.1 5

The SQALE Method Definition Document

2. Fundamental Principles

The SQALE Method is based on the following ninedamental principles:

1. The quality of the source code is a non-functiorglirement.
A software development or maintenance project Hgectives that have to be achieved. These relate to
deadlines, costs, functionality and quality. Inerdo be achieved, these objectives have to bealised.

The formalisation of the objectives is translatatbirequirements. Those that relate to the qualityhe
source code belong to the so-called non-functioegliirements.

2. The requirements in relation to the quality of #oarce code have to be formalised according tcsémee
quality criteria such as any other functional regurient.

Consequently, a quality requirement concerningfiaveoe source code must at least be:
- Atomic
- Unambiguous
- Non-redundant
- Justifiable
- Acceptable
- Implementable
- Not in contradiction with any other requirement
- Verifiable

3. Assessing the quality of a source code is in egsansessing the distance between its state aegpiéxted
quality objective.

Being that the objective is to meet the source aguaiglity requirements; the measure of the qualfty o
source code can be reduced to the measure ofdtznde that separates it from the targeted confprmi

Although other conceptions and other definitiongjaélity exist, it is this definition that the SQELMethod
takes into account for an assessment of the scod=

Comment:

As other conceptions and definitions are more suiyje, the adopted definition provides better supfar
automated assessment of the code’s quality.

4. The SQALE Method assesses the distance to the momtjowith the requirements by considering the
necessary remediation cost of bringing the sounde ¢o conformity.

5. The SQALE Method assesses the importance, the ingiae non-conformity by considering the resulting
costs of delivering the source code with this nonformity.

6. The SQALE Method respects the representation condit

The SQALE Method has been designed by respedtisgbndition (see a definition of this conditionthe
appendix). This impacts the choice of the requiretsietheir organisation in the Quality Model ane th
aggregation rules.

7. The SQALE Method uses addition for aggregatingréraediation costs, the non-remediation costs and fo
calculating its indicators.

6 Version: 1.1

The SQALE Method Definition Document

8. The SQALE Method'’s Quality Model is orthogonal.
The SQALE Method uses an orthogonal Quality Modleis means that a requirement relating to one @f th
code’s internal attributes appears only once inQbality Model. A requirement is linked to only ogeality
subcharacteristic. A subcharacteristic is linkednty one quality characteristic.

9. The SQALE Method’s Quality Model takes the softwsuldecycle into account.

The SQALE Method’s Quality Model's characteristisspcharacteristics and requirements are orgairsed
such a way as to reflect the chronology of the aeseth as they appear in a software’s lifecycle.

Version: 1.1 7

The SQALE Method Definition Document

3. The SQALE Quality Model

1. General Structure

The SQALE Quality Model is used for formulating aorgjanising the non-functional requirements thkttesto
the code’s quality. It is organised in three hiehézal levels which are represented in Figure Bl first level
is composed of characteristics, the second of sracteristics. The third level is composed of regmients that
relate to the source code’s internal attributessehrequirements usually depend on the softwaceitert and
language.

Figure 3.1. The SQALE Quality Model's General Struture

Level 1 Level 2 Level 3
Characteristic Sub Source Code
1 1n Characteristic = 4 1n Requirement

Based on Lifecycle Based on Language
Activities Subactivites or dependent
Requirement Domains

2. The Characteristics Level

The SQALE Quality Model has nine Level 1 charastégs, which are presented in Figure 3.2. They lmeen
deduced from the theoretical cycle of a source[Rlef. 1].

These characteristics are “abilities” resultingnirthe 1ISO 25010 standard [Ref 4]. They have bebsttssl, on
the one hand because they depend on the codetsdhteroperties, and on the other because theythire
impact the typical activities of a software applica’s lifecycle.

The SQALE Quality Model can therefore be regarded arojection of the ISO 25010 model in the chtogy
of a software application’s lifecycle.

Figure 3.2. The SQALE Quality Model's Characteristcs

Reusability

Portability

Maintainability
Security
Usability
Efficiency
Changeability
Reliability
Testability

8 Version: 1.1

The SQALE Method Definition Document

3. The Subcharacteristics Level

Each characteristic may be broken down into sulacheristics. Subcharacteristics are used to comthiee
requirements into medium-sized groups so thatl“dalvn” analyses can be carried out.

There are two types of subcharacteristic:

- Subcharacteristics corresponding to lifecycleiviti#s such as unit test, integration test, opsation of
processor usage and optimisation of the size ofjgmerated code. These are representddgare 3.3. They
are presented in their chronological order.

- Subcharacteristics resulting from generally redsed taxonomies in terms of good and bad practilasing

to the software’s architecture and coding. Thisglfication is an implementation choice. Inspiratican be
drawn from existing classifications such as the cargied out byD. Spinellis [Ref 5].

Figure 3.3. The Subcharacteristics Resulting from lfecycle Activities

Reusability Understandability

Portability Readability

Maintainability Accessibility

Security Ease of use

Usability

Ram related efficiency
Efficiency

Rom related efficiency

Changeability CPU related efficiency

Reliability

Integration testing testability

= T

Testability Unit testing testability

A subcharacteristic is attached to only one charéstic, the first in the chronology of the chamadtics.

The appendix contains an example of charactedstitsubcharacteristic hierarchy.

4. The Requirements Level

This level of the model contains all of the souccele’s quality-related requirements. They are fdated by
respecting the quality criteria (atomicity, clarignd so on) presented in the Fundamental Prircgdetion.

Requirements relate to the artefacts that compbeesbftware’s source code, e.g. software applicgfio
components, files, classes, and so on and so forth.

Each of the requirements will be attached to theeki possible level, i.e. in relation to the ficpiality
characteristic to which it chronologically contribs.

For example, let us suppose that we are expressiegjuirement relating to cyclomatic complexity {R4.
This internal property impacts the unit test eBdtherefore the Testability) and the understandingrefore the
maintainability). We will attach the requirementthe first subcharacteristic, which is the unit tasd therefore
to the testability.

A typical requirement, would be to be within a gteld limit for a structural measure, or the respefca
syntactical rule. We provide as an appendix somaiQuModel examples for various languages.

Version: 1.1 9

The SQALE Method Definition Document

5. SQALE Quality Model Tailoring

To preserve all of the SQALE Method’s propertied aenefits, its Quality Model adaptation and cussation
possibilities are limited, these being the follogiin

5.1. Tailoring the Characteristics List

In a context that justifies it, it is possible tegard certain characteristics as non-applicablehig case, the
associated subcharacteristics and requirementietgted from the Quality Model.

The characteristics which can be regarded as nplieaple are the following:
- Efficiency
- Usability
- Security
- Maintainability
- Portability
- Reusability

In every case, the order of the characteristicst marsain unchanged in relation to the SQALE Quadlitydel
presented ifFigure 3.2.

5.2. Tailoring the Subcharacteristics List

For the subcharacteristics resulting from the litde activities and if the context justifies it,n8e of them can
be deleted if they correspond to a non-applicabtevigy in the context of the software that is bgiassessed.
For example, the optimisation of the ROM memory.

For the other subcharacteristics (correspondingetuirement categories), some of them can be dklete
reorganised or added according to the contexteftiftware that is being assessed. The guidelite ébtain

subcharacteristics that group the requirements rdogp to logic that contributes to the analysise th
understanding or the remediation of nonconformities

5.3. Tailoring the Requirements List

All of the requirements represent the software’sree code’s quality objectives. They therefore havée
adapted according to the expectations and neetthe @iroject or organisation.

To do so, they have to be attached to one subdkaistic of the model in compliance with the prasty stated
principles.

5.4. The Quality Model and the Technical Debt conce pt

All requirements included within the SQALE QualModel shall be considered as incurring TechnicahtDin
addition, all issues considered by a team as im@ifechnical Debt should have a related requirdrrethe
Quality Model.

The Quality Model should be incorporated within Definition(s) of Done of an Agile Project.

10 Version: 1.1

The SQALE Method Definition Document

4. The SQALE Analysis Model

1. Structure

The SQALE Analysis Model contains on the one hdmrtles that are used for normalising the measamds
the controls relating to the code, and on the diferules for aggregating the normalised values.

The SQALE Method normalises the reports resultiognfthe source code analysis tools by transforrttiegn
into costs. To do this remediation functions andh-remediation functions are used. These concems ar
described in the following paragraphs.

The SQALE Method defines rules for aggregating sosither in the Quality Model’s tree structure,ithe
hierarchy of the source code’s artefacts.

2. Remediation Functions

When a Quality Model's requirement is formulatedaasule that has to be obeyed, the associated megasu
collected by the analysis tools, is the detectedber of violations per artefact.

The remediation function’s goal is to normaliselfirgs related to one requirement into remediatiostsc This
normalization is performed from the technical tgaomt of view.

In order to do this normalisation, one can simpbg @ multiplicative factor that corresponds to &herage
remediation cost unit for bringing the code intafmwsmity. The value of this factor will depend dretactivities
that have to be carried out in order to remedyntbre conformity.

This value can be very low in the case, for exampleere the violation relates to one of the codefmatting
requirements. The remediation can be carried owtrbiDE functionality. As this change of the codeesl not
impact the code generated by the compiler, it c¢sequire a verification and validation cycle.

This value can, in other cases, be much higherusectine code will have to follow a verification aralidation
cycle that is both complete and costly. It is feample the case when the code’s structure or &cthite has to
be changed in order to make it conform to the @uaiodel.

In order to get a more precise estimation of theediation cost, it possible to normalize with a enoomplex
function that use as parameters some code'’s intattnidbutes as well as the measured value. Thpsitcularly
the case when a Quality Model requirement consisieeping a measure within a certain interval (epie: a
function must have a cyclomatic complexity belowy 15

In order to respect the representation conditioenegediation function must:

- Be strictly monotonic on the interval (or thedntals) corresponding to the non-conforming values.

- Be constant or equal to 0 on the interval (orititervals) corresponding to the conforming values.

Remediation function examples are given in the agpe

3. Non-remediation Functions

The decision to fix a non-conformity has an asdediaremediation cost and a negative impact on the
development plan. Symmetrically, to keep and delav@on-conformity has a negative impact on therass
plan. This negative impact has an associated dastvis the non-remediation cost of the non-confgrm

The non-remediation function’s goal is to normaliselings into non-remediation costs. This normtiian is
performed from the Business or Product Owner pafiview.

Version: 1.1 11

The SQALE Method Definition Document

This Business Impact should represent all the demagferred by the non-conformity, damages that lwan
numerous. This includes, but is not limited to:

- A more expensive remediation cost that need tgbatsn a later phase of the lifecycle
- A more expensive maintenance cost (enforced by pkahy duplicated code)

- Additional resource costs, such as CPU power, mgnaisk space (enforced by example by violations
of efficiency related requirements)

- Extra man power to operate the software (longeailaion, configuration, back-ups...)
- Costs for investigating and fixing a bug resultfirgm a non-conformity
- A provision to cover the related risks of leaviranrconformities

All these inferred costs may be difficult to esttmand to model within a non-remediation functiBelevant
stakeholders should be involved in the estimatfoth® non-remediation cost to each requirementekample :

- Maintenance team (cost of bugs, cost of lack ofroemts, cost of duplicated code...)

- Production team (cost of extra hardware)

- Business team (cost of unavailability, cost of jpevformances...).
It is possible to use a global approach based ®pdmalty concept. It is the penalty that the pcodwner will
ask as a compensation for delivering the produth wiviolation. Below this amount, he/she won't eqaicthe

violation. For this amount, he/she considers thatgenalty is an acceptable compensation andttbavérs all
the damages, of all types, that result or may tésarh the violation.

The set of non-remediation functions shall represéom the Product Owner point of view, the relati
importance of the different non conformities thatvelopers may leave in the source code.

In order to respect the representation conditiorgraremediation function must:
- - Be strictly monotonic on the interval (or thedntals) corresponding to the non-conforming values.

- - Be constant or equal to 0 on the interval (orititiervals) corresponding to the conforming values.

4. Aggregation Rule

Within the SQALE method, all aggregations are mageadditions. This applies to remediation costs aoi-
remediation costs.

This is the case in the Quality Model's requiremiigtrarchy. By application of the principle thatander to
estimate the remediation or non-remediation cost oharacteristic or a subcharacteristic, all thimates of
the costs of the related non-conformities will bieed.

This is also the case in the artefact hierarchthefsource code. In order to estimate an artefest'®diation or
non-remediation cost, the estimated costs forfatsa@onstituent elements have to be added.

5. Tailoring the Analysis Model

5.1. Tailoring the Remediation Functions

Remediation costs are depending on the local anesprocesses of the organisation or project coecderThe
remediation functions can be tailored in orderaaespond as closely as possible to the real reatiedicosts
for the evaluated software. This customisation niestarried out in compliance with SQALE’s fundartadn
principles.

12 Version: 1.1

The SQALE Method Definition Document

5.2. Tailoring the Non-remediation Functions
Non-remediation costs are depending on the lodakyprocesses and business of the organisatipnogect
concerned. The non-remediation functions can Ber¢al in order to correspond as closely as possblhe

real non-remediation costs for the evaluated soBiw@his customisation must be carried out in ciamgle
with SQALE’s fundamental principles.

5.3. Tailoring the Aggregation Rules

The SQALE aggregation rules cannot be tailored.

5.4. The Analysis Model and the Technical Debt conc ept

The set of remediation functions associated to aliQuModel constitutes aTechnical Debt principal”
estimation model.

The set of non-remediation functions associated uality Model constitutes arechnical Debt interest”
estimation model.

Version: 1.1 13

The SQALE Method Definition Document

5. The SQALE Indices

All of the SQALE indices represent costs. All thelices are measured in relation to the same uhiighwis
either a monetary unit, a work unit or a symbolittuln every case, the indices have values onate suf the
ratio type. They can therefore be manipulated aitlihe operations that are authorised for a schtdis type
[Ref. 6, Page 57].

1. Absolute Indices

1.1. Characteristic Indices

For any element of the artefact hierarchy of thers® code’s, the remediation cost relating to aegiv
characteristic can be estimated by adding up atl@femediation costs linked to the detected ranfermities
noted with regard the requirements linked to therabteristic.

The SQALE Characteristic Indices are the following:
SQALE Testability Index: STI
SQALE Reliability Index: SRI
SQALE Changeability Index: SCI
SQALE Efficiency Index: SEI
SQALE Usability Index: SUI
SQALE Security Index: SSI
SQALE Maintainability Index: SMI
SQALE Portability Index: SPI

SQALE Reusability Index: SRul

1.2. Quality Index: SQI

For any element of the artefact hierarchy of there® code, the remediation cost relating to alihef Quality
Model's characteristics can be estimated by addip@ll of the remediation costs linked to all oé tQuality
Model’s requirements.

This derived measure is called: the SQALE Qualiigelx: SQI.

The SQALE Quality Index is a precise implementatifrthe concept of “Technical Debt” commonly used t
manage agile projects. The SQI represents theipahaf the Technical Debt associated to the sooocke.

1.3. Consolidated Indices

In order to give a synthesised representation efsthurce code’s quality, SQALE defines consolidatelites.
These indices aggregate the Characteristic Indlicge following way:

* The consolidated index of a given characteristiegeal to the sum of its index with all the indicd#s
the previous characteristics contained in the Quibdel that is being used.

For example, in the case where the Quality Modslkept the nine characteristics of Figure 3.2:
SQALE Consolidated Reliability Index: SCRI = STERI

SQALE Consolidated Changeability Index: SCCI = $13RI + SCI

14 Version: 1.1

The SQALE Method Definition Document

SQALE Consolidated Efficiency Index: SCEI = STI RIS+ SCI + SEI

SQALE Consolidated Security Index: SCSI = STI + SRBCI + SEI + SSI

SQALE Consolidated Reusability Index: SCRul = ST$RI + SCI + SEI + SSI + SMI + SPI+ SRul
For reasons of coherency, the Consolidated Tegtalvitlex is defined as:
SCTI = STI

The use and the interpretation of these consolidaigices are detailed in the appendix. They aesl ue feed
the “SQALE Pyramid” indicator.

1.4. Business Impact Index: SBII

For any element of the artefact hierarchy of thers® code, the non-remediation cost can be estihaye
adding up all the non-remediation costs linkedltthe Quality Model’s requirements.

This derived measure is called: the SQALE Busitegrct Index: SBII.

The SQALE Business Impact Index represents ther®ssi perspective of the non-conformities of thec®u
code. It also represents the interest part of g@hfical Debt of the source code.

2. Index Densities

2.1. Code Size Measurement

A density index has to be associated with eachlatesmmdex definedn the previous paragraph. To do this, the
absolute index has to be divided by a measure septimg the size of the concerned artefact.

The user or the implementer has to choose, acaptdithe context, a measure that approximatesotijective,
for example the number of effective code lines,dheomatic complexity as per McCabe [Ref. 7], thanber
of instructions, or the Halstead volume [Ref. 8].

2.2. Index Density

A density index has to be associated with eachlatesmdex defined in the previous paragraph. Toeecsize
measure that is adopted for calculating these tlessias to be specified.

Index Density Table:

Index Acronym Density Index Acronym Density Index Name
STI STID SQALE Testability Index Density
SRI SRID SQALE Reliability Index Density
SCl SCID SQALE Changeability Index Dens
SEI SEID SQALE Efficiency Index Densii
SuUl SUID SQALE Usability Index Density
SSi SSID SQALE Security Index Density
SMI SMID SQALE Maintainabilityindex Densit
SPI SPIC SQALE Portability Index Densi
SRul SRulD SQALE Reusability Index Density

Version: 1.1 15

The SQALE Method Definition Document

Index Acronym Density Index Acronym Density Index Name
SBII SBIID SQALE Busines Impactindex Densit

For example: The SQALE Testability Index Density
STID: SQALE Testability Index Density = SKELOC
Where KSLOC is the size of the artefact expressalddusands of instruction lines.
Comment:
Although one can in theory calculate index densitia artefacts or groups of artefacts of any sires should

in practice be careful with densities calculated asingle file. A file of very small size can theve a very
high density.

16 Version: 1.1

The SQALE Method Definition Document

6. The SQALE Indicators

The SQALE Method defines three synthesised indisatéach user or implementer can define othersrdcap
to his or her information needs. The appendix dostaome examples of indicators.

These three SQALE indicators, which relate to thelity characteristics, enable a highly synthesised
representation of an application’s quality to beegi

1. The SQALE Rating

The rating consists of producing a derived measaran ordinal scale. An example of such a scal&aod,
Average, Bad.

In the SQALE Method, this one is done on a scalfivefvalues or more (for example with six valuésB, C,
D, E and F).

The rating for a given artefact results from a cangon of the artefact's estimated remediation @dg#t an
estimate of the artefact's development cost.

To do this, one defines in advance a grid suctaisih Figure 6.1, conveying the degree of accéltabf the
remediation cost in relation to the development.cos

Figure 6.1. a5 levels SQALE Rating Grid Example

Rating Up to Color

1%
2%
4%
8%

m-

Detailed example:

m O O @

If one has chosen to express the cost in hourghendize in KSLOC, and if the average cost of 1 RELhas
been estimated at 100 hours. The grid in Figurestused as follows:

According to the grid example of Figure 6.1, arefatt that has a development cost estimated athb06s

(because its size is 5 KSLOC) and a SQALE Qualitiek (which is the principal of the Technical Dedft)15
hours, will have a ratio of 15 hours/500 hours = 3%SQALE rating will be “C".

2. The SQALE Pyramid

This graph represents, for a given software apiidicaall of the collected indices. In view of tdependence of
the model's quality characteristics on the lifeeydt helps appropriate decisions to be made.

This graph contains on the one hand the absoldieds, and on the other, the consolidated indiwdigwing
the chronology of the Quality Model's charactedstiThis indicator has the following form:

Version: 1.1 17

The SQALE Metho

Definition Documer

Figure 6.3. SQALE Pyramid Example

Reusability

Portability

Maintainability

Security

Usability

Efficiency

Changeability

Reliability

Testability

Testability Reliability ~ Changeability Efficiency Usability Security

817

248

6535

6535 7083 8563 8811 8 861 98678

3. The SQALE Debt Map

This graph represents artefacts of the evaluatiopes plotted on two dimensions. The first one (6)is the
Technical Debt axis (SQI), the second one (Y aidgsthe Business Impact axis (SBIl). This graph uses
logarithmic scales.

3589

13 267

Portability

784

542

13 809 14 593

When the information is available, the size of dutsy depend on a third measure like the busindss wd the

artefacts.

Figure 6.4 SQALE Debt Map Example

100000
-
Q
©
£
= o
g 10000 o &] 8
c 8 P
‘A [*)]
é’ 08 @ 00 o
1000 | o o *]
o
® (*)
° 0 ® o
100 8 Ps 2 000 00
o o @0
o % 06 %000
° @00
10 -
Oo % d eO 000
! 0‘,1 1,0 16.0 100,0 1060,0
Technical debt
18 Version: 1.1

The SQALE Method Definition Document

4. Steering a project with the appropriate indicato rs

When monitoring the code quality of a developmentnaintenance project, one will need two types of
indicators.

» The first type of indicators is representing thaetiss and the trends of the project regarding iesgo
The SQALE Rating and all the SQALE indexes belanguch type of indicators.

e The second type of indicators is providing analgsipabilities for supporting decisions. The SQALE
Pyramid and the SQALE Debt Map belong to such tfpeadicators.

Version: 1.1 19

The SQALE Method Definition Document

7. The SQALE Conformity Criteria

In order to be in conformity with the Version 1.1 the SQALE Method, an implementation must meet the
following criteria:

- Support the SQALE Method’s fundamental principles
- Enable a SQALE Quality Model to be defined anduge
- Enable a SQALE Analysis Model to be defined agidup

- Produce the SQALE Characteristic Indices (absatutd consolidated) corresponding to the models set
up

- Produce the SQALE Quality Index (SQI) correspagdio the models set up
- Produce the SQALE Business Impact Index (SBliyegponding to the models set up

The other elements of the method, such as the iddesities and the indicators, are optional.

20 Version: 1.1

The SQALE Method Definition Document

Appendices

1. The representation condition

The representation condition is an important conepoiof the theory of measure.
As a reminder and as explainediRef 6 p28]:

"Measurement is defined as the mapping betweeartgrical and the formal world. A measure is a namtr
symbol assigned to an entity in order to charasgeain attribute.”

In order to set up a quality measure system, sofes have to be observed:

"We want the behaviour of the measures, in the rurastem to be the same as the corresponding eigeine
the real world, so that by studying the numbers |eeen about the real world. Thus we want the magpod
preserve the relation. (...)

The representation condition asserts that a measapping M must map entities into numbers and eogbir

relations into numerical relations in such a wagtttihe empirical relations preserve and are preseby the
numerical relations." [Ref. 6 p31]

2. Example of Breakdown as Subcharacteristic

The following figure presents an example of a SQAQHality Model with seven characteristics and the
selected subcharacteristics:

Figure 8.1. Example of Levels 1 and 2 of a SQALE ity Model

Reusability Extractability

Reusability Conciseness

Reusability Stability

Portability Language related portability
Portability Time zone related portability
Portability Hardware related portability
Paortability External application related portability
Partability Compiler related portability
Portability 0OS related portability
Maintainability Understandability
Maintainability Readability

Security ‘08 related security

Security User related security
Security Statement related security
Usability Accessibility

Usability Ease of use

Efficiency ROM related efficiency
Efficiency RAM related efficiency
Efficiency CPU related efficiency
Changeability ‘Architecture related changeability
Changeability Logic related changeability
Changeability Data related changeability
Reliability Fault tolerance

Reliahility Architecture related reliability
Reliability Resource related reliability
Reliability Synchronization related reliability
Reliability Statement related reliability
Reliability Logic related reliability
Reliability Data related reliability
Testability Integration Testing testability
Testability Unit Testing testability

Version: 1.1 21

The SQALE Method Definition Document

3. Quality Model Examples

The following figure presents an example of a SQAREality Model for the C++ language.

Figure 8.2. SQALE Quality Model Example for the C++ Language (tailored to 5
characteristics)

Characteristic | SubCharacteristic i Generic Requirement Description
Maintainability Understandability No use of double pointer

Maintainability Understandability No unstructured statements (goto, break outside a switch...)
Maintainability Understandability No use of "continue" statement within a loop
Maintainability Understandability No use of ternary operators

Maintainability Understandability File comment ratio (COMR) > 25%

Maintainability Readability Capitalization rules for identifying code elements are followed
Maintainability Readability The code follow consistent block formatting rules
Maintainability Readability The code follow consistant whitespace rules
Maintainability Readability The code follow consistant indentation rules
Maintainability Readability File size (LOC) <1000

Maintainability Readability All declarations are done in a consistent order
Maintainability Readability No commented-out code

Efficiency ROM related efficiency All statements are useful

Efficiency RAM related efficiency Class depth of inheritence (DIT) <8

Efficiency RAM related efficiency No unused variable, parameter or constant in code
Changeability Architecture related changeability Class weighted complexity (WMC) <100

Changeability Architecture related changeability Coupling between objects (CBO) <7

Changeability Logic related changeability All if, for, while structures have a clear scope delimitation
Changeability Data related changeability No explicit constants directly used in the code (except 0,1, True and False)
Reliability Architecture related reliability No multiple inheritance of implementation classes
Reliability Resource related reliability No use of freed or unallocated memory

Reliability Statement related reliability No ambiguous statement execution order

Reliability Logic related reliability No assignement within a condition

Reliability Logic related reliability Invariant iteration index

Reliability Data related reliability No use of unitialized variables

Reliability Data related reliability Al types are safely converted

Reliability Data related reliability No module with a variable number of parameters
Reliability Data related reliability Al types are explicitly declared (no Void *)

Testability Unit Testing testability All modules are reachable

Testability Unit Testing testability No duplicate part over 100 token

Testability Unit Testing testability Number of ind. test paths within a module (v(G)) <15
Testability Unit Testing testability Number of parameters in a module call (NOP) <7

The following figure presents an example of a quatiodel for the Java language.

Figure 8.3. SQALE Quality Model Example for the Jawa Language (tailored to 5
characteristics)

Characteristic SubCharacteristic i Generic Requirement Description
Maintainability Understandability No unstructured statements (goto, break outside a switch...)
Maintainability Understandability No use of "continue" statement within a loop

Maintainability Understandability File comment ratio (COMR) > 35%

Maintainability Readability Variable name start with a lower case letter

Maintainability Readability The closing brace '} is on a standalone line

Maintainability Readability The code follow consistant indentation rules

Maintainability Readability File size (LOC) <1000

Maintainability Readability No commented-out code

Efficiency RAM related efficiency Class depth of inheritence (DIT) <8

Efficiency RAM related efficiency No unused variable, parameter or constant in code
Changeability Architecture related changeability Class weighted complexity (WMC) <100

Changeability Architecture related changeability Class specification does not contains public data
Changeability Logic related changeability If, else, for, while structures are bound by scope
Changeability Data related changeability No explicit constants directly used in the code (except 0,1, True and False)
Reliability Fault Tolerance Switch' statement have a 'default' condition

Reliability Logic related reliability No assignement ' =" within 'if* statement

Reliability Logic related reliability No assignement ' =" within ‘while' statement

Reliability Logic related reliability Invariant iteration index

Reliability Data related reliability No use of unitialized variables

Testability Integration level testability No "Swiss Army Knife" class antipattern

Testability Integration level testability Coupling between objects (CBO) <7

Testability Unit Testing testability No duplicate part over 100 token

Testability Unit Testing testability Number of ind. test paths within a module (V(G)) <11
Testability Unit Testing testability Number of parameters in a module call (NOP) <6

22 Version: 1.1

The SQALE Method Definition Document

4. Remediation Function Examples

In order to associate a remediation function wihteof the model’s requirements, one can do ividdally by
estimating the average remediation cost of a narfiecmity for each requirement.

One can also apply a logic consisting of analys$ireg“remediation cycle” which will be engaged a time of
the remediation of the nonconformities.

In the following example, in a given organisatiamdan the light of its context, the requirementvédeen
classified in five types as defined in the follogitable. All the requirements of the same type hbeen
associated with the same remediation factor.

Figure 8.4. Example of Remediation Factors assoced with various types of non-
conformity

NC Type Name Description Sample Remediation Factor
Typel Corrigible with an automated tool, no risk Change in the indentation 0.01
Type2 Manual remediation, but no impact on compilation Add some comments 0.1
Type3 Local impact, need only unit testing Replace an instruction by another 1
Type4 Medium impact, need integration testing Cut a big function in two 5
Type5 Large impact, need a complete validation Change within the architecture 20

Figure 8.5 shows an example of a remediation fonctihat one can apply for calculating the remedmtost
when the required comment ratio has not been readhé¢his example, the threshold is 30%.

For a given artefact, Valueg" corresponds to the cost necessary for adding aamtsnand for bringing into
conformity an artefact that has no comment (anatéorying out the possible corresponding verifimatcycle).

Value “a’ depends on the size of the file and consequemtlyhe number of comments line corresponding to a
ratio of 30%.

Value ‘b” corresponds to the cost consisting of adding amlg comment line (and of carrying out the possible
corresponding verification cycle).

Figure 8.5. Example of a Remediation Function fortte Comment Ratio

A

Remediation
Cost

Cost to open a file

|
T T 1 1
10% 20% 30% 40%

Model threshold

Figure 8.6 shows an example of a remediation foncthat one can apply to calculate the remediatimst
when one cuts an artefact into two or more ireotd reduce its coupling or its cyclomatic comfihexin this

Version: 1.1 23

The SQALE Method Definition Document

case, the threshold is 15. Value “C” is the costesponding to the cutting into 2. When the artefas a
complexity cyclomatic higher than three times tieshold, it has to be cut into 4, that is to sapst estimated
twice “C”, which establishes the slope of the gimiline.

Figure 8.6. Example of a Remediation Function for Gtting an Artefact

v

15 30 45 60

5. Non-Remediation Function Examples

In order to associate a remediation function withteof the model’s requirements, one can do ividdally by
estimating the average non-remediation cost ofracomformity for each requirement.

One can also apply a logic consisting of asso@adiwriticality to each requirement.

In the following example, in a given organisatiamdan the light of its context, the requirementwédeen
classified in five types as defined in the follogitable. All the requirements of the same type hbeen
associated with the same non-remediation factois Tépresents the priority of the different typdsnon-
conformities as perceived by the Product Owner.

Figure 8.7. Example of Non-Remediation Factors assiated with various types of non-
conformity

NC Type Description Sample Non-Remediation
Factor

Blocking Will or may result in a bug Division by zero 5 000
High Wil have a high/direct impact on the maintainance cost Copy and paste 250

Medium Will have a medium/potential impact on the maintainance cost Complex logic 50
Low Wil have a low impact on the maintainance cost Naming convention 15

Report Very low impact, it is just a remediation cost report Presentation issue 2

24 Version: 1.1

The SQALE Method Definition Document

6. Examples of additional Indicators to the SQALE
Indicators

The following Figures give four examples of indimat built upon the SQALE indices.

Figure 8.8. Comparative Histogram of SQALE Maintairability Index Densities

SQALE Consolidated Maintainability Inde x Density by parts

Part 1 Part 2 Fart 3 Part 4 Part 5

Figure 8.9. Historical Trend Graph of the Technich Debt (SQALE Quality Index)
according to an application’s various parts

SQALE Quality Index by parts and version

W Part_1
W Part_2

Part_3

V1.1 V1.2 V1.3 V14 V15 V16

Version: 1.1 25

The SQALE Metho Definition Documer

Figure 8.10. Historical Trend Graph of the Technial Debt (SQALE Quality Index)
according to the impact level of the violations

Technical Debt Analysis

Severity Type
Blocker 400
Very critical
Critical
Major
Minor

300

200

100

V0.7 V0.8 V0.9

Figure 8.11. Application Portfolio Management witha Map representation

Portfolio Analysis: Business Impact vs Technical Debt

[Size: Non-Remediation Cost [Color: Remediation Cost]

26 Version: 1.1

The SQALE Method

Definition Document

7. The SQALE Quality Model’'s Two Points of View

The SQALE Quality Model has the characteristic nporting two points of view. On the one hand, the

developer’s point of view through the subcharast&riand characteristic indices. Those indicatimdniim the
presence of non-conformities impacting the preeistvities of the lifecycle. On the other, the usesr the
“owner’s” point of view with the consolidated chateristic indices that represent the totality oé thon-

conformities to be remedied in order to reach thesp of the lifecycle concerned under the bestitiond.

For example, the absolute maintainability indexrespnts the remediation cost for the requirememectty
linked to maintainability. But in order for a sofive application to be able to be easily maintaiimedts
operating phase, it has to be testable, relialjpgradable, performing and maintainable. It is tforee the

consolidated maintainability index that best repres the software’s status in relation to that ciibje.

This duality of the points of view is synthesisad-igure 8.

8.12. The SQALE Quality Model’s Two Points of View

An analytic view provided
by crthegeonal

characteristics

One understands impact
of each Non Conformity

An external view that represents the
perceived quality evaluated by consolidation
of the hierarchy of characteristics

Reusabil

Portabilit

Security

and improvement on Efficiency
internal quality .
characteristic and life Changeabil
Cycie Issues Reliability
Testability
Version: 1.1

27

The SQALE Method Definition Document

8. Use Scenario of the SQALE Method: Example 1

This paragraph gives a detailed example of a SQMeEhod use scenario. The chosen example descrdves h
an organisation can use the SQALE Method for pilgpmmtrolling the development of a project thas Heeen
subcontracted to a service company

The main stages are the following:

1 - The project manager identifies the quality objes for the application that he is going to haeweloped.
These objectives are for example very great rdifglaind a good quality for the remainder of theuacteristics
of the source code.

If the organisation does not already have a SQALUEI®y Model, it develops one that lists all of the
requirements relating to the code’s quality.

2 - When the contract is drawn up, the requiremeeitding to the code’s quality are specified bptcact. That
results in the communication of the following elarse

- The SQALE Quality Model which will be used asewfnce (i.e. the precise requirements for the
language used)

- The remediation functions used to calculate &@madiation costs

- The target thresholds for various index densitiemgreement with the targeted objectives
For example, if the size is expressed in KSLOCi&ngliability is a strong requirement:

-STID<0.1

-SRID<0.1

- Other characteristic SQALE indices densities < 3

3 - The subcontractor, during the course of théeptpreports the value of the various indicatdrtha time of
the steering committee meetings in order to aghgrelient that the code’s quality objectives Wil met.

4 — At the time of the delivery, the subcontragtoovides the analysis results for proving that ¢batractual
thresholds have been met.

5 - If necessary, at the time of the acceptancg the organisation checks with its own tools tkia
requirements have indeed been met.

9. Use Scenario of the SQALE Method: Example 2

This paragraph gives another detailed example &QALE Method use scenario. The chosen example
describes how an organisation can use the SQALEhddefor properly managing the quality of the code
developed by angile project. This is performed by continuously monitoring fhechnical Debt of the project.

The main stages are the following:

1 - The project’s team identifies the quality oltjees and the associated requirements for the tiwtewill be
developed. Any violation of these requirements midlure Technical Debt.

If not provided by the organisation, the team depelthe SQALE Quality Model and the SQALE Analysis
model that will be used to estimate the Techniaabttaccumulated by the project.

28 Version: 1.1

The SQALE Method Definition Document

2 — The continuous integration system is configucedalculate the SQI (that estimates the Techiiieddt) and
the associated SQALE indicators at each build.

3 - At each build the team monitors and analysesTéchnical Debt of the project (SQI). This indsxused to
monitor the project in addition to other indicatdilee backlog and velocity. The SQALE pyramid ar t
SQALE debt map are used to analyse in detail tlaflieal Debt and decide the priorities and the beshent
to start some refactoring activities. Normally,aetbring should start by addressing the issuesecelo the
lowest layers of the SQALE Quality Model, which medl'estability and Reliability.

10. Comments

Readers are invited to provide their comments grpgoblems noted in relation to this document,heyton
technical or presentational aspects. This can be da the websitttp://www.sqale.org

Version: 1.1 29

